Int. J. Heat Mass Transfer.

Vol. 19, pp. 943-949.  Pergamon Press 1976. Printed in Great Britain

SIMULTANEOUS DEVELOPMENT OF THE LAMINAR
VELOCITY AND TEMPERATURE FIELDS IN A CIRCULAR
DUCT FOR THE TEMPERATURE BOUNDARY
CONDITION OF THE THIRD KIND

V. JAVERI
Institute of Nuclear Engineering, Technical University of Berlin, Marchstr, 18, Berlin 10, Germany

(Received 15 December 1975)

Abstract—To analyze the influence of the developing flow in a circular duct on the laminar forced
convection heat transfer, the non-linear momentum and linear energy equation are solved successively
by employing the Galerkin—Kantorowich method of variational calculus. Assuming constant fluid
properties, negligible axial diffusion and temperature boundary condition of the third kind, a closed
form solution for velocity and a semi analytic solution for temperature are derived. It is concluded
that there can be a considerable difference, depending upon Biot number and Prandtl number, between

the local Nusselt number considering the radial convection and that neglecting it.

NOMENCLATURE

X, axial coordinate direction;

A, channel cross section; 0, value for x = 0.

Bi, Biot number, equation (5);

F,  avector, equation (11); Superscripts

Nu,  Nusselt number, equation (35); -, dimensionless quantity. equation (5);

Pe,  Peclet number, equation (5); " (d/dx).

Pr, Prandtl number, equation (5);

R, tube radius; 1. INTRODUCTION

Re,  Reynolds number, equation (5); IN THE most of the analyses on the laminar forced

T, temperature; convection heat transfer in a channel, either the

Cps specific heat at constant pressure; boundary condition of the first kind characterized by

dp, hydraulic diameter; the prescribed wall temperature or the boundary con-

h, heat-transfer coefficient, equation (33); dition of the second kind expressed by the prescribed

k, overall heat-transfer coefficient, equation (4);  wall heat flux is assumed. A more realistic condition

m, a parameter, equation (10); in many applications, however, will be the temperature

D, pressure; boundary condition of the third kind: the local wall

q, heat flux; heat flux is a linear function of the local wall

r, radial coordinate; temperature. This situation is relatively less studied and

t, time; is encountered in the heat transfer process, where the

v, velocity; radiative heat transfer, describable in terms of Newton’s

X, axial coordinate. law of cooling, occurs at the channel wall.

The main concern of the present analysis is with the

Greek symbols laminar forced convection heat transfer in the thermal

2y thermal conductivity; entrance region of a circular duct for the temperature

v, kinematic viscosity; boundary condition of the third kind. Accordingly,

o, mass density; some typical studies on this particular subject are

[], matrix; mentioned below.

{}, column vector.

Fully developed viscous flow

Subscripts Schenk and Dumore [1] solved the Sturm-Liouville
a, ambient; type eigenvalue problem and determined the first three
d, fully developed; eigenvalues for the different wall resistance parameters.
ent, entrance region, equation (26); Sideman er al. [ 2] extended the analysis [1] by evaluat-

running index;
inf,  asymptotic value;

ing the first five eigenvalues. Using the finite difference
method, Mckillop er al. [3] analyzed the same problem

J running index; for Newtonian and non-Newtonian fluids. Hsu [4]
m, mean value; refined the analysis [2] by considering the heat con-
r, radial coordinate direction; duction of the fluid in the direction of the flow and by
w, wall; evaluating the first ten eigenvalues.
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Slug flow

Considering the axial fluid heat conduction,
Schneider [5] solved the problem formulated in [1]
and determined the first six eigenvalues for a flat
channel and a circular duct. Golos [6] obtained an
exact series solution by neglecting the axial heat
conduction and by employing the Laplace trans-
formation. He also derived an approximate solution by
applying the principles of restricted variation. Tyagi
and Nigam [7] solved the same problem by utilizing
the Galerkin method of variational calculus.

The assumption of the axially constant velocity
profile introduced in the analyses mentioned is removed
in this paper by considering the simultaneous develop-
ment of the velocity and temperature fields.

The objective of the present paper is to investigate
the laminar forced convection heat transfer in a circular
duct for the temperature boundary condition of the
third kind. Three different types of the flow situation
are treated; slug flow, fully developed viscous flow and
developing flow. To solve the non-linear momentum
equation, the Galerkin—Kantorowich method of
variational calculus is employed. The non-linearity of
the momentum equation is kept in its original form and
is not violated. A complete closed form solution is
obtained for the developing velocity field. The influence
of the radial convection on the local Nusselt number
for various Prandt! and Biot numbers is investigated.
Since the axial molecular momentum transport and the
heat conduction are neglected, this analysis is valid for
Re 2 50 and Pe = 50 only.

2. ANALYSIS
Congider steady, developing laminar flow in a
circular duct. Assuming constant fluid properties and
neglecting the heat generation within the fluid, the
laminar forced heat convection subject to boundary
condition of the third kind for temperature can be
described by the equations

divy =0, (H
p{(Dv,/Dt) = —grad p+pvdivgrad vy, (23
pcp(DT/Dt) = Adivgrad T, (3)

x=0:0y = vy0, =0, p=po, T= T,
x—=0 T To vg~ Uxg, Ur—0,
r=0:0T/0r =0, 0v/ir=0

r=R:v,=0, v,=0, AT/ Ory+(T—-T)=0
whete k is the overall-heat-transfer coefficient based
on the resistance of wall and ambient side surface
resistance and T, is the constant ambient temperature.

For an easy treatment of the governing equations, the
following dimensionless quantities are introduced:

x/R, ¥ = r/R,

(4)

=

Uy = vx/Ux.mw Er = Ur/Ux.ms Uxom = (1,/A)J deAs
A

— (p—polipvim). T = (T—T)(To—Tp). ©)

Re = v, R/v, Pr=vpc,fi.

Pe = RePr = v, ,, Rpc,fA, Bi = Rk/A. J
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Neglecting the molecular momentum transport and the
heat conduction in the direction of flow, from the
equations given above, one can obtain

(D5 /ET)+ B,/F +(88,/0F) = 0. (6)
Re[5,(805/0%) + 5,00 /5F}+(dﬁ/d?]

— [(L/)(85/0F) + (P*5./0F%)] =
L(T) = Pe[t (0T /0%)+7, ﬁT/or)]
~[AERT/EH+@* T/ =0. 8)

L{t,) =

The conditions describing the problem are:

¥=0:5, ‘-=0,5~:0,T_

00 T [ »0, o = Ty = 2(1~72), ©
F=0:@0T/0 f) 0, (85,/0F) =0,

Fe1:b,=18 =0, (6T/0F)+BiT = 0.

To solve equations (7) and (8), the Galerkin-
Kantorowich method of variational calculus is
employed, which allows to reduce a partial differential
equation to an ordinary one. The method is well
described by Kantorowitsch and Krylow [8] and
Krajewski [9]. Let the approximate velocity and
temperature field be

e = (142/m)(1~|7{"), {10a)
£y = (dm/dx) (F/m*) (1 — [F" +m|F|" In |F|), (10b)
T= Zﬁ(\) (1=C,[(j+ 1P =27+ 2]), (11a)

m=m{X),

C; = BI/[B!(2}+ D+2i+ 1],
L = lfl fz(\ fN(X)}-

The fields (10) and (11) satisfy the continuity equation
(6), the symmetry and boundary conditions (%) and
energy equation (8) at the duct wall Taking the
momentum equation {7} and the energy equation (8}
with the natural boundary conditions (9) as the Euler
equation of the variational formulation, one may solve

J L(.)65,dA4 = 0. (12)
A

(1ib}
{1ic)

f L{T)6TdA =0, (13)
A

to evaluate the unknown functions m(%) and fi(x). To
determine the value of the unknown functions at the
channel entrance, one may employ the conditions

4

o

J g2A[T(X=0)—To]?dd —»min, (19
A

where g; and g, are appropriate weighting functions.

For the present problem

gi=1 and g,=10{x=0) (16}

are suggested.

The important feature of the present method is that
the non-linear momentum equation is solved in its
original form without simplifying it. This is in contrast
to the analysis performed by Langhaar [10] and
Sparrow et al. [11].
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Since the fluid properties are constant, the momen-
tum and energy equations can be solved successively.
With
S5ty = (00,/0m)dm = —(1/m?)[2(1 ~[F|™)

+mm+2)[F" In|F|}ém, (17)

1

j Sv rdr =0,

0

(18)

from equations (7), (10), (12) and (14), one can derive
(19)
(20)

X-0m=mp— o0,
(dm/dx)—0,
Re(dm/d3) = —(m+2)(m—2)(m+1)*(3m+2)>/
[m*(12m> +97m? + 144m+ 60)], (21)
(x/Re) = ~(13/216)In(1 —2/m)+ In(1 +2/m)
—(49/27) In (1 + 1/m)+ (7/8) In [ 1 +2/(3m)]
—(23/9)/(m+ 1)+ (1/6){(m+ 1)* +5/3m+2)

X 00:m= My — 2,

~2/(3m+2)%. (22)
To calculate p(X), one may use either
1
J L(#)FdF =0, (23)
0
or
1
j‘ L(v,)o,rdF = 0. (24)
0

From equations (7), (10), (21) and (24), one obtains
—Re(dp/dzx) = (1 +2/m)?
3(Tm+6){m—2)(m+1)(3m+ 2}
[m 2 19T + 144m 1 60) ] - @

Defining

P = Pear + Re(dp/dX)ine (X/Re), (26)

it follows

(dﬁent/dm) = [Re(d[‘?/d?)
— Re(dp/dX)c]/[Re(dm/d%)].  (27)

From equations (21), (25} and (27), one can derive

(dPeny/dm) = (87m® + 55Tm* +920m> + 744m?
+432m+ 144)/[2(m+2) (m+ 1)’ 3m+2)*], (28)
Pent = 81n(1 +2/m)— 101n(1 + 1/m)+21n[ 1 +2/(3m)]
—(41/2)/(m+ 1)+ (3/2)/(m + 1) +(104/3)/(3m +2)
—(64/3)/(3m+2)2. 29

In this way, the laminar entrance flow is described
fully analytically. With the analytical expression (10)
for the velocity field, the energy equation can be solved
easily. The discussion of the entrance flow results is
given in [12]. There, the approximation (10) was
successfully used to analyze the magneto-hydro-
dynamic channel flow heat transfer in the thermal
entrance region.

To determine the temperature field T(x,7), the
approximations (10) and (11) are inserted in equation
(8). With

8T = Z (0T /o1 of;, (30)

from equations (8) and (13), one can derive a system
of ordinary differential equations for f;(X) as follows
(for details see Appendix)

ReP[D){F'} — RePrim’/m)[V]{F) = [W]{F}. (31)

Combining equations (8), (11) and (15), one can derive
a system of algebraic equations for f;(¥ = 0) as follows

(for details see Appendix)
[M){F(s = 0)} = (B} (2)

The characteristic quantities describing the heat
transfer at the channel walls are

gw= —Mgrad T, = BT~ To), (33)
T, = [1/(ux,mA)]J Te dA, (34)
A
Nu = hdy/A = 2R(ET/ér) /T, — T,)
= 2((‘\' T,,’/(‘}f)w/f( Tw_ Tm) P (35)
@T/oFy -y = — 2 2+ 1)f;Co (36)
J
T, =Y fil1-Ci2j+ 1], (37)
J
— m
Tm = 2(1 +2/m);f1|:§(n;+—2)
mij+ 1) mj* ]
Y o S A A ————> 1. (38
C’{(2]‘4-2) (m+2i+2) (2j+4) (m+2j+4)} (38)
3. RESULTS

To investigate the influence of Biot number on the
heat transfer in the thermal entrance region, equations
(31) and (32) were solved by employing the standard
Crank-Nicolson procedure for the following velocity
profiles:

Case 1: uniform velocity profile, slug flow, m - cc,
Case 2: fully developed viscous velocity profile, m = 2,
Case 3:developing velocity profile from case | to case 2.

To assess the accuracy of the results obtained in this
paper, the special case of Bi » o0, was analyzed for
different number of terms in temperature approxima-
tion {11). This special case corresponds to the situation
of the constant wall temperature and is well studied by
different authors employing different methods. The
local Nusselt numbers according to equation (35) for
Bi — o0 were compared with the exact series solutions
given by Tao [13] for the slug flow and given by
Sellars et al. [14] for the fully developed viscous flow.
It was found that the accuracy of the results depends
strongly upon the number of terms considered in
equation (11): closer a location to the channel entrance,
larger the numer of terms needed to describe a good
approximation for this location. As a weak point of the
present method of solution, it was noted that with
increasing number of terms in equation (11), the
determinant of matrix [M] of equation (32) tends to
zero. This means a difficulty in solving equation (32).
Consequently, the first eight terms are considered in the
approximate solution (11). From Table 1, one can learn
that the present local Nusselt numbers based on the
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Table 1. Local Nusselt numbers for Bi — oo at various values of Pr

Developing flow

X/Pe Fe=2(1—-7%) Pr=10 Pr=1 Pr=0.7 Pr=0.1 =1

[14] @ v, #0 0,=0 #0 =0 ,#0 0,=0 o, #0 =0 @ [13]
0.0001 34.86 41.57 4519 6550 5439 6746 56.25 67.70 6530 68.50 69.28 1115
0.0002 28.17 33.48 36.47 5753 4669 6192 4871 6229 5858  63.66 64.68 81.23
0.0005 20.62 20.60 2345 3824 3304 4741 3495 4832 4486 Sl.o4 S53.14 52.07
0.001 16.25 15.19 16.46 2246 2233 31.66 2370 3291 3181 38.06 40.36 37.32
0.002 12.81 12.66 1327 1499 1575 1945 16.38 2030 2093 2487 27.72 26.87
0.005 9.395 9.503 9.531 10.67 11.21 12.88 11.56 1326 13.78 1545 17.61 17.67
0.01 7.470 7.456 7.326 7971 8359 9528 8.609 9814 1025 11.39 13.09 13.07
0.02 6.002 5.997 5885 6.168 6387 7075 6.551 7.278  7.709  8.448 9.881 9.883
0.05 4.641 4.640 4644 4677 4724 5042 4814 5156 5563 5947 7.233 7.237
0.1 4.005 4.002 4.003 4013 4010 4149 4061 4222 4624 4831 6.177 6.179
0.2 3710 3.709 3709 3710 3712 3736 3723 3.768 4154 4242 5815 5.817
0.5 3.657 3.657 3.657 3658  3.657 3658 3.658 3.658 3879 3.899 5.783 5.783
1.0 3.657 3.657 3657 3657 3657 3.657 3.657 3657 3743 3745 5.783 5.783

b4 I Bi—e,  Pr=.7 | neglected. As (x/Pe) decreases, the difference between

\m:Zl Deve(oe'f)g Flow |m -
v # 0 v =
J@@;bﬁ_@h@_@d
ohidl,  x @5l + |eh3l
|\ FR—

48

32

b o i
RS — ‘
‘j’:‘*‘*w-—i:j;_:_:
(x/Pe) :
o 2 5 W0 2z 5

ey

FiG. 1. Comparison of local Nusselt numbers for Bi -oc
and Pr = 0.7.

first eight terms in equation (11) agree well with the
results based on the first fifty eigenvalues given in [13]
and [14] for (3/Pe) = 0.0005. This accuracy seems to
be reasonable for the practical engineering purposes.

In Fig. 1, the present local Nusselt numbers are
compared with the results obtained earlier for the
developed and developing velocity fields, Bi — o« and
Pr=0.7. For this purpose, the results of Ulrichson
and Schmitz [15] and Hwang and Sheu [16] are
employed. They used the finite difference technique to
solve the energy equation. They refined the analysis of
Kays [17] by utilizing the axial velocity component
of Langhaar solution and subsequently the radial
component from the continuity equation to estimate
the influence of the radial convection and by introduc-
ing finer mesh sizes. It seems that the abscissa of the
diagrams showing local Nusselt numbers in [15] is
misprinted; it is supposed to be (¥/Pe)/4 instead of
4(X/Pe). From Fig. 1, one can conclude a satisfactory
agreement of the present results with the results
reported in [ 15] and [16].

Figure 1 and Table | illustrate the influence of the
radial convection on the heat-transfer coefficient
distinctly. They indicate that the local Nusselt number
in the thermal entrance region, specially near the
channel entrance, is overestimated significantly, if the
radial convection term in the energy equation is

the local Nusselt number considering the radial con-
vection and that neglecting it becomes pronounced,
for instance
Nu[(X/Pe) = 0.001, Bi — oc, Pr = 0.7, without radial
convection]
Nu[(Y/Pe) = 0001, Bi » % . Pr= 0.7, with radial
convection ]

= 32912370 = 1.39.

This influence of the radial convection can be
explained as follows: near the channel entrance, the
fluid mean temperature is nearly the same in both the
cases but ther wall heat flux given by (6T/0F). in
equation (35) is considerably larger than the actual
rate of heating, because the continuity equation is not
satisfied locally, if the radial convection is neglected.

If the velocity and temperature fields are developing
simultaneously, the axial velocity profile remains
always in the range limited by iy =1 and 4=
2(1 —r2). Consequently, for any given value of (¥/Pe),
one expects Nu (slug flow) = Nu > Nu (fully developed
flow).

In the case of Pr — 0, which is approximately valid
for liquid metals, one can assume uniform velocity
profile. In the case of Pr— oo, which is nearly valid
for very viscous fluids (oils), one can assume fully
developed velocity profile. This influence of Prandtl
number on the local Nusselt number can be inferred
from Table 1 for Bi - oc .

The other extreme case of Bi — 0, which corresponds
to the situation of the constant wall heat flux, cannot
be treated with the approximation (11), as C; — 0. For
this particular case, which is well investigated by
different authors employing different methods, one has
to formulate another approximation, for instance as
in [12].

Tables 2-5 show the local Nusselt numbers for the
different values of Pr and Bi and also illustrate the
influence of the radial convection. The comparison of
the present local Nusselt numbers with the results
given by Hsu [4], who solved eigenvalue problem
numerically assuming a fully developed viscous flow



Table 2. Local Nusselt numbers for Bi = 100 at several values of Pr

Developing flow

X/Pe m=2 Pr=10 Pr=1 Pr=0.7 Pr=0.1 m— oo
v, #0 v, =0 v, #0 v,=0 v, #0 v, =0 v, #0 v, =0
0.0001 4301 49.74 69.97 58.84 72.63 60.67 72.76 70.48 73.76 74.39
0.0002 3385 40.53 60.49 50.70 65.99 52.64 66.38 63.08 68.19 69.02
0.0005 21.37 26.49 39.31 36.27 49.54 38.20 50.65 48.34 5477 56.65
0.001 15.87 18.27 23.38 24.78 3299 26.24 34.40 34.64 40.27 4338
0.002 12.98 14.04 15.57 17.05 20.42 17.81 21.40 2293 26.45 30.17
0.005 9.621 9.837 10.83 11.64 13.21 12.04 13.65 14.54 16.13 18.78
0.01 7.558 7.501 8.081 8.597 9.690 8.874 10.00 10.64 11.72 13.71
0.02 6.061 5977 6.237 6.514 7172 6.691 7.387 7914 8.627 10.23
0.05 4.672 4.677 4719 4.776 5.084 4872 5.204 5.649 6.025 7.385
0.1 4.026 4.027 4.037 4.037 4.172 4.090 4.248 4.666 4.870 6.259
0.2 3.722 3.723 3.726 3.723 3.751 3.740 3.784 4.176 4263 5.869
0.5 3.669 3.669 3.669 3.669 3.669 3.669 3.669 3.892 3914 5.832
1.0 3.666 3.666 3.666 3.667 3.667 3.667 3.667 3.750 3.763 5.832
Table 3. Local Nusselt numbers for Bi = 10 at several values of Pr
Developing flow
X/Pe m=2 Pr=10 Pr=1 Pr=20.7 Pr=20.1 m— o
v, #0 v, =0 v, #0 ,=0 v, #0 v, =0 v, # 0 ty =0
0.0001 4461 56.26 77.03 65.25 80.63 67.68 81.73 82.09 83.71 85.03
0.0002 35.60 46.28 64.20 56.10 71.50 58.64 7291 72.49 76.17 78.49
0.0005 24.02 31.79 40.98 41.27 52.38 43.34 53.88 55.19 59.74 64.09
0.001 18.12 22.52 26.10 29.69 3574 31.26 37.23 40.59 44.19 50.35
0.002 14.31 16.41 17.73 20.75 23.39 21.72 24.49 28.14 30.31 37.00
0.005 10.40 11.02 11.80 13.43 1471 13.97 15.30 17.49 18.60 23.70
0.01 8.154 8.276 8.750 9.738 10.62 10.10 11.01 12.47 13.27 17.00
0.02 6.469 6.471 6.684 7217 7777 7.441 8.033 9.043 9.594 12.36
0.05 4924 4927 4972 5.126 5.396 5.247 5.543 6.204 6.517 8.518
0.1 4.193 4.194 4207 4244 4.365 4307 4.450 4974 5.160 6.942
0.2 3.838 3.838 3.841 3.853 3.873 3.866 3.908 4.348 4.428 6.310
0.5 3.763 3.763 3.763 3.764 3.764 3,764 3.764 4.008 4.025 6.224
1.0 3.763 3.763 3.763 3.763 3.763 3.763 3.763 3.855 3.857 6.224
Table 4. Local Nusselt numbers for Bi = 5 at several values of Pr
Developing flow
X/Pe m=2 Pr=10 Pr=1 Pr=207 Pr=0.1 m— o0
v, #0 v, =0 v, #0 v, =0 v, #0 v, =0 v, #0 v, =0
0.0005 24.50 31.93 40.19 42.16 52.58 4431 55.30 58.89 62.98 67.72
0.001 18.68 22.99 26.28 30.56 36.18 32.40 38.21 43.45 46.66 53.19
0.002 14.75 16.81 18.12 21.58 24.02 22.89 25.53 30.11 32.19 38.89
0.005 10.77 11.39 12.16 14.09 15.30 14.76 16.00 18.72 19.79 25.32
0.01 8.468 8.590 9.062 10.26 11.07 10.70 11.53 13.34 14.07 18.35
0.02 6.705 6.715 6.949 7.608 8.128 7.872 8.405 9.651 10.15 13.41
0.05 5.110 5.113 5.149 5.368 5.621 5.504 5.778 6.576 6.858 9.255
0.1 4.329 4.331 4.344 4.407 4.524 4.479 4611 5.223 5.382 7.473
0.2 3935 3.937 3.944 3.965 3978 3.974 4.017 4.495 4.572 6.684
0.5 3.845 3.846 3.847 3.846 3.847 3846 3.847 4.105 4.122 6.547
1.0 3.844 3.844 3.845 3.844 3.844 3.844 3.845 3.941 3950 6.547
Table 5. Local Nusselt numbers for Bi = 2 at several values of Pr
Developing flow
X/Pe m=2 Pr=10 Pr=1 Pr=107 Pr=0.1 m— 0
v, #0 v, =0 v, #0 v, =0 v, # 0 v, =0 v, #0 v, =0
0.001 20.55 26.09 30.65 34.99 41.72 3496 42.33 49.72 50.38 54.41
0.002 15.82 18.69 20.06 23.87 26.65 24.62 27.60 33.26 33.71 39.32
0.005 11.43 12.36 13.08 15.22 16.45 15.74 16.92 20.13 20.65 25.68
0.01 8938 9.287 9.691 11.02 11.81 1143 12.17 14.32 14.71 19.02
0.02 7.112 7.201 7.394 8.159 8.630 8.429 8.894 10.39 10.71 14.26
0.05 5.389 5.391 5.452 5.760 5.981 5.884 6.119 7.118 7.291 10.09
0.1 4574 4578 4.579 4.684 4.774 4.756 4873 5.621 5.721 8.181
0.2 4.120 4.129 4.133 4,165 4.174 4.171 4210 4.759 4.823 7.289
0.5 4.001 4,003 4.004 4.003 4.005 4.003 4.005 4.285 4.302 7.088
1.0 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.105 4.108 7.087

947
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and calculated the first twelve eigenvalues and
presented the local Nusselt numbers for (¥/Pe) = 0.02
and Bi = 2, 10 and 100, indicated a good agreement.
The results for the developing flow cannot be compared,
since to the author’s knowledge no similar analysis is
reported in the literature. In case of finite Biot number,
qualitatively the same influence of the radial convec-
tion and of Prandtl number on the local Nusselt
number can be observed as in the case of Bi » «.
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APPENDIX

The elements of the matrices and vectors occurring in
uations (31) and (32) are listed below.

: Number of terms considered in approximation (11).
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D(i, j) = M(i, ), if mo is replaced by m.

Q1= /(2 +2)—1/m+2j+2)—m/(im+2j+2)%,

Qs = 1/2j+d)— 1/ (m+2+4)—mi(im+2j+4)?,

Ou = /242420~ 1fim+2i+2j+2)
—mf(m+2i+2j+2)%,
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Vi j) = G20+ D%Q1 =22/ +2)Q
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ETABLISSEMENT SIMULTANE DES CHAMPS LAMINAIRES DE VITESSE ET DE
TEMPERATURE DANS UN TUBE CIRCULAIRE AVEC CONDITIONS AUX LIMITES DE
TROISIEME ESPECE SUR LA TEMPERATURE

Resume- Afin d¢tudier I'influence de I'établissement du régime d’écoulement dans un tube circulaire
sur la convection thermique forcée laminaire, on résout 'équation non-linéaire de quantite de mouvement
et I'équation linéaire de la chaleur par la méthode, de Galerkin-Kantorowich, du calcul des variations.
Moyennant des hypothéses de propriétés physiques du fluide constantes, d’une diffusion axiale négligeable
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et de conditions aux limites de troisiéme espéce sur la température, on a obtenu une solution explicite de

vitesse et une solution semi-analytique pour la température. Il ressort que les nombres de Nusselt locaux

obtenus en considérant la convection radiale ou en la négligeant peuvent présenter d’importantes differences
qui dépendent des nombres de Biot et de Prandtl.

GLEICHZEITIGE AUSBILDUNG DER LAMINAREN GESCHWINDIGKEITS-
UND TEMPERATURFELDER IN EINEM KREISFORMIGEN KANAL FUR DIE
RANDBEDINGUNG DRITTER ART

Zusammenfassung— Mit Hilfe der Galerkin—Kantorowich Methode wurde die nichtlineare Bewegungs-
und die lineare Energiegleichung sukzessiv gelost, um den EinfluB der sich ausbildenden Strémung in
einem kreisférmigen Rohr bei Wirmeiibertragung unter laminarer erzwungener Konvektion zu analy-
sieren. Unter Annahme konstanter Stoffwerte vernachléssigbarer axialer Diffusion und der Randbedingung
dritter Art wurde eine Losung in geschlossener Form fiir die Geschwindigkeit und eine halbanalytische
Losung fiir die Temperatur hergeleitet. Es zeigte sich, daB zwischen der ortlichen Nusselt-Zahl bei
Beriicksichtigung der radialen Konvektion und jener bei Vernachlassigung dieser Konvektion, abhéngig
von der Bio— und Prandtl-Zah! betrdchtliche Unterschiede auftreten konnen.

OJIHOBPEMEHHOE ®OPMUPOBAHMUE MOJIEN JJAMUHAPHON CKOPOCTHU
M TEMIIEPATYPBI B TPYBE KPYIJIOI'O CEYEHWA TPU
TEMIMEPATYPHOM I'PAHUYHOM YCJIOBUU TPETBLEI'O POJA

Annorauma — Mcnons3sys Meton BapdalMOHHOrO ucudcnexwds Ianepkuna-Kauroposwua, mocie-
[OBATEJBHO pellieHbl HETMHERHOE YPABHEHHE KONUYECTBA ABHXXEHHSA U IHHENHOE YDABHEHHKE HEPTHH,
C MOMOILLIO KOTOPbIX AHATM3UPYETCK BIAMAHUE PA3BUBAIOLLIETOCS TEYEHHA B TPYOE KPYIaoro ceyeHus
Ha Tem1000MEH NpPH JIAMUHAPHOM BbLIHYXOEHHOW KOHBEKUMH. B MpeamoNiokeHHWH MNOCTOAHHBLIX
CBOMCTB XUAKOCTH, HE3IHAMUTENBHON aKcHanbHOU AuddY3INU H TEMIIEPAaTYPHOTO TPAHHYHOTO YC/I0BHS
TPETHErO POAA, NNOJIYYEHO PELISHHE B 3aMKHYTOM BUAE AJIs CKOPOCTH M Temnepatypsl. U3 nposeaet-
HOrO aHaln3a CIIEAYET, YTO B 3aBUCHMOCTH OT yucen buo u Mpanatna noxkanbubie yucna Hyccensta
NpHY y4eTe paauaibHONH KOHBEKUNK 1 O3 Hee MOTYT 3IHAYUTE/IbHO OTIHYATHCA.
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