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Abstract-To analyze the influence of the developing flow in a circular duct on the laminar forced 
convection heat transfer, the non-linear momentum and linear energy equation are solved successively 
by employing the Galerkin-Kantorowich method of variational calculus. Assuming constant fluid 
properties, negligible axial diffusion and temperature boundary condition of the third kind. a closed 
form solution for velocity and a semi analytic solution for temperature are derived. It is concluded 
that there can be a considerable difference, depending upon Biot number and Prandtl number, between 

the local Nusselt number considering the radial convection and that neglecting it. 

NOMENCLATURE 

channel cross section; 
Biot number, equation (5); 

a vector, equation (11); 
Nusselt number, equation (35); 
Peclet number, equation (5); 
Prandtl number, equation (5); 
tube radius; 

Reynolds number, equation (5); 

temperature; 
specific heat at constant pressure; 
hydraulic diameter; 
heat-transfer coefficient, equation (33); 
overall heat-transfer coefficient, equation (4); 
a parameter, equation (10); 
pressure; 
heat flux; 
radial coordinate; 
time ; 
velocity; 
axial coordinate. 

Greek symbols 

i, thermal conductivity; 

$1, kinematic viscosity; 

P. mass density; 

ii: 

matrix; 
column vector. 

The main concern of the present analysis is with the 
laminar forced convection heat transfer in the thermal 
entrance region of a circular duct for the temperature 

boundary condition of the third kind. Accordingly, 
some typical studies on this particular subject are 
mentioned below. 

Fully deue/oped uiscousJow 
Subscripts Schenk and Dumore [l] solved the Sturm-Liouville 

a, ambient; type eigenvalue problem and determined the first three 
d, fully developed; eigenvalues for the different wall resistance parameters. 
ent, entrance region, equation (26); Sideman et al. [2] extended the analysis [l] by evaluat- 
1, running index; ing the first five eigenvalues. Using the finite difference 
inf, asymptotic value; method, Mckillop et al. [3] analyzed the same problem 

J> running index; for Newtonian and non-Newtonian fluids. Hsu [4] 

m, mean value; refined the analysis [2] by considering the heat con- 

r, radial coordinate direction; duction of the fluid in the direction of the flow and by 
W, wall; evaluating the first ten eigenvalues. 

X, 

0, 

axial coordinate direction; 
value for x = 0. 

Superscripts 

dimensionless quantity. equation (5); 
(did.?). 

1. INTRODUCTION 

IN THE most of the analyses on the laminar forced 
convection heat transfer in a channel, either the 
boundary condition of the first kind characterized by 
the prescribed wall temperature or the boundary con- 
dition of the second kind expressed by the prescribed 
wall heat flux is assumed. A more realistic condition 
in many applications, however, will be the temperature 
boundary condition of the third kind: the local wall 
heat flux is a linear function of the local wall 
temperature. This situation is relatively less studied and 
is encountered in the heat transfer process, where the 
radiative heat transfer,describable in terms of Newton’s 
law of cooling, occurs at the channel wall. 
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SlugJioM~ 
Considering the axial fluid heat conduction, 

Schneider [5] solved the problem formulated in [l] 
and determined the first six eigenvalues for a flat 
channel and a circular duct. Golos [6] obtained an 
exact series solution by neglecting the axial heat 
conduction and by. employing the Laplace trans- 
formation. He also derived an approximate solution by 
applying the principles of restricted variation. Tyagi 
and Nigam [7] solved the same problem by utilizing 
the Gaferkin method of variational calculus. 

The assumption of the axially constant velocity 
profile introduced in the analyses mentioned is removed 
in this paper by considering the simultaneous develop- 
ment of the velocity and temperature fields. 

The objective of the present paper is to investigate 
the laminar forced convection heat transfer in a circular 
duct for the temperature boundary condition of the 
third kind. Three different types of the flow situation 
are treated: slug flow, fully developed viscous flow and 
developing flow. To solve the non-linear momentum 
equation, the GalerkinKantorowich method of 
variational calculus is employed. The non-linearity of 
the momentum equation is kept in its original form and 
is not violated. A complete closed form solution is 
obtained for the developing velocity field. The influence 
of the radial convection on the local Nusseh number 
for various Prandtf and Biot numbers is investigated. 
Since the axial molecular momentum transport and the 
heat conduction are neglected, this analysis is valid for 
Re > 50 and Pe > 50 only. 

2. ANALYSIS 

Consider steady, developing laminar flow in a 
circular duct. Assuming constant Auid properties and 
neglecting the heat generation within the fluid, the 
Iaminar forced heat convection subject to boundary 
condition of the third kind for temperature can be 
described by the equations 

divv = 0, (1) 

p(~z?~~~t) = - grad p + pv div grad l’, , 121 

pc,(DT/Dt) = /idivgrad T, (3) 

x = 0 : v, = vX,~, v, = 0, p = pa, T = 7;, , 

x --* 00 : T -+ T,, v, --t L’x,d, 1;r + 0, 

r = O:dT/& = 0, dvJ?r = 0. 

: 

(41 

r = R:v, = 0, vr = 0, ~(~T~~r)+k(T-~~ = 0, 

where k is the overall-heat-transfer coefficient based 
on the resistance of wall and ambient side surface 
resistance and T, is the constant ambient temperature. 
For an easy treatment of the governing equations, the 
following dimensionless quantities are introduced: 

\-=x/R, F=P,%, ‘I 

Fx = t’x/vx.m, cr = vr&,,, v,,,,, = (l/A) i ! v,dA, 

Neglecting the molecular momentum transport and the 
heat conduction in the direction of flow, from the 
equations given above, one can obtain 

(&Ji%) t fi,/? + f&,/W = 0, (6) 

L(&) z Re[ti,(&/&?) + &(~~,/~~)+(d~/d.~)] 

- [(l/i;)(at;,/aT)+(~“z?xir?r2,] = 0. (7) 

L(T) zz Pe[i&(f?T,/&)+ i’,(3T/lF)] 

-[(l/~)(t3iTliit:)+(az;i/c:l:“)] = 0. (R) 

The conditions describing the problem are: 

.y=:o:t;,= 1, ?,=O, FZO, T= 1 > 

.T-+K?:T+0, c,-+o, l’x+FXd=2(1-?Z), 

* 1 

i = 0 : @T/r??) = 0, (dt;,</W) = 0, 
(91 

?= i:U,=t-,=O, (3?J+/L7f)+BiF=O. 

To solve equations (7) and (81, the Galerkin- 
Kantorowich method of variational calculus is 
employed, which allows to reduce a partial differential 
equation to an ordinary one. The method is well 
described by Kantorowitsch and Krylow [8] and 
Krajewski [9]. Let the approximate velocity and 
temperature field be 

r, = (1+2/m)(l -/rl”), m = m(?). (lOa) 

1;, = (dm/d.~)(~/m2)(1-~l’~m+rn~~~mln~~~), (lob) 

T;= ~,fj(.~)(1-Cj[(~+1)Z~2~-j2j;2~+2]j, (lla) 

Cj = Bij[Bi(;Zj-t l)+y(ji l)], (lib) 

f F) = {l; (.?I, ,fi(.?), . . .&(.Y)j . (1 lc) 

The fields (10) and (11) satisfy the continuity equation 
(6). the symmetry and boundary conditions (9) and 
energy equation (8) at the duct wall. Taking the 
momentum equation (7) and the energy equation (8) 
with the natural boundary conditions (9) as the Euler 
equation of the variational formulation, one may solve 

s 
L(i;,)iE,dA = 0, (12) 

n 

s 
L(?=)fiTdA = 0, (133 

A 

to evaluate the unknown functions m(Y) and fj(S). To 
determine the value of the unknown functions at the 
channel entrance, one may employ the conditions 

s g,(r)[i.,(.\- =I 0)-iQ0]2dA-+min, (14) 
.4 
r 

? 
g2(r’) [T(.Y = 0)- ;f’o]2 dA -+ min, (15) 

A 

where gr and g2 are appropriate weighting functions. 
For the present problem 

~3~ = 1 and y2 = F,(.Z = 0) (161 

are suggested. 
The important feature of the present method is that 

the non-linear momentum equation is solved in its 
original form without simplifying it. This is in contrast 
to the analysis performed by Langhaar [lo] and 
Sparrow et ai. [ 1 I]. 
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Since the fluid properties are constant, the momen- from equations (8) and (13), one can derive a system 
tum and energy equations can be solved successively. of ordinary differential equations for j;(S) as follows 
With (for details see Appendix) 

66, = (&,/&n)&n = -(1/&)[2(1- IFI”) 

+m(m+2)~?~“In~~~]6m, (17) 

RePr[D]{F’}-RePr(m’/m2)[V]jFi = [w](FJ. (31) 

Combining equations (S), (I 1) and (I 5), one can derive 
a system of algebraic equations for,fj( \- = 0) as follows 

(for details see Appendix) 

[M](F(.? = 0)) = (B) (32) 

The characteristic quantities describing the heat 
transfer at the channel walls are 

from equations (7), (lo), (12) and (14), one can derive 

.Y-+O:m=mO+cO, (19) 

.T ---t CO : m = minf -+ 2, (dm/d4) -+ 0, (20) 

Re(dmld.7) = - (m + 2) (m - 2) (m + 1)3(3m + 2)3/ 

[m2(12m3+97m2+144m+60)], (21) 

(.f/Re)= -(13/216)1n(l-2/m)+In(l+2/m) 

-(49/27) In (1~ l/m)+ (7/8) In [l -t 2/(3m)] 

-(23/9)/(m+l)+(1/6)/(m+1)2+5/(3m+2) 

-2/(3m+2)‘. (22) 

To calculate p(r), one may use either 

s 

1 
L(L’,)rd? = 0, (23) 

0 

or 
,.. 

J 
I 

L(iY,)l;,rd? = 0. (24) 
0 

From equations (7), (lo), (21) and (24), one obtains 
- Re(djS/d.Y) = (1 + 2/m)’ 

m+3(7m+6)(m-2)(m+1)(3m+2) 1 2(12m3+97m2+144m+60) 

Defining 

p = ,%,, + Re(dj/dX)&/Re), 

it follows 

(d,&,,/dm) = [Re(dp/d.?) 

-Re(dji/d.i&]/[Re(dm/d.t-)] . 

(25) 

(26) 

(27) 

From equations (21), (25) and (27), one can derive 

(d&,,,/dm) = (87m5 + 557m4 + 920m3 + 744m2 

+432m-t 144)/[2(m+2)(m+ 1)3(3m+2)3], (28) 

P,,t = 81n(l+2/m)-101n(l+l/m)+21n[lf2/(3m)] 

-(41/2)/(m+1)+(3/2)/(m+1)2+(104/3)/(3m+2) 

- (64/3)/(3m + 2)2. (29) 

In this way, the laminar entrance flow is described 

fully analytically. With the analytical expression (10) 
for the velocity field, the energy equation can be solved 
easily. The discussion of the entrance flow results is 

given in [12]. There, the approximation (10) was 
successfully used to analyze the magneto-hydro- 
dynamic channel flow heat transfer in the thermal 
entrance region. 

To determine the temperature field T(,Y, Y), the 
approximations (10) and (11) are inserted in equation 
(8). With 

qw = -I(grad T), = h(T,.- T’,), (33) 

T, = [l/(c,.,A)] 
J 

Tr,dA. (34) 
4 

Nu = hdJ1, = 2R(? T,/i’r),,,/( T, - T,) 

= 2(iT/?iq,/(‘T,- T,), (35) 

(?T,iS),=, = -C?j(,j+l).f;Cj, (36) 

(37) 

;i;, = 2(1+2/m)C.h Q&& 
I [ 

i 

m(j+ 1)’ 

-‘j _(2j+2)(m+2j+2) 

mj’ 

(2j+4)(m+TZj )i 
(38) 

3. RESULTS 

To investigate the influence of Biot number on the 

heat transfer in the thermal entrance region. equations 
(31) and (32) were solved by employing the standard 
Crank-Nicolson procedure for the following velocity 

profiles : 

Case 1: uniform velocity profile, slug flow, m --) ozj, 
Case 2: fully developed viscous velocity profile, m = 2, 
Case 3 : developing velocity profile from case I to case 2. 

To assess the accuracy of the results obtained in this 
paper, the special case of Bi + m, was analyzed for 
different number of terms in temperature approxima- 
tion (11). This special case corresponds to the situation 

of the constant wall temperature and is well studied by 
different authors employing different methods. The 
local Nusselt numbers according to equation (35) for 
Bi -+ cc were compared with the exact series solutions 
given by Tao [I33 for the slug flow and given by 
Sellars et al. [14] for the fully developed viscous flow. 

It was found that the accuracy of the results depends 
strongly upon the number of terms considered in 
equation (11): closer a location to the channel entrance, 
larger the numer of terms needed to describe a good 
approximation for this location. As a weak point of the 
present method of solution, it was noted that with 
increasing number of terms in equation (1 t), the 
determinant of matrix [M] of equation (32) tends to 
zero. This means a difficulty in solving equation (32). 
Consequently, the first eight terms are considered in the 
approximate solution (11). From Table 1, one can learn 
that the present local Nusselt numbers based on the 



946 V. JAVERI 

Table 1. Local Nusselt numbers for Bi --f cu at various values of Pr 

\-lPr Pr= 10 
Developing flow, 

PI.= I Pr = 0.7 
[I41 0 

0.0001 34.X6 41.57 
0.0002 28.17 33.48 
0.0005 20.62 20.60 
0.001 16.25 15.19 
0.002 12.81 12.66 
0.005 9.395 9.503 
0.01 7.470 7.456 
0.02 6.002 5.997 
0.05 4.64 1 4.640 
0.1 4.005 4.002 
0.2 3.710 3.709 
0.5 3.657 3.657 
1.0 3.657 3.657 

I’, f 0 I>, = 0 

45.19 65.50 
36.47 57.53 
23.45 38.24 
16.46 22.46 
13.27 14.99 
9.531 10.67 
7.326 7.97 I 
5.885 6.168 
4.644 4.677 
4.003 4.013 
3.709 3.710 
3.657 3.658 
3.657 3.657 

I‘, # 0 

54.39 
46.69 
33.04 
22.33 
15.75 
II.21 
8.359 
6.387 
4.724 
4.010 
3.712 
3.657 
3.657 

L’, = 0 I’, # 0 L’, = 0 L‘, # 0 

67.46 56.25 67.70 65.30 
61.92 48.71 62.29 58.58 
47.41 34.95 48.32 44.86 
3 I .66 23.70 32.9 I 31.81 
19.45 16.38 20.30 20.93 
12.88 11.56 13.26 13.78 
9.528 8.609 9.8 14 10.25 
7.075 6.551 7.278 7.709 
5.042 4.814 5.156 5.563 
4.149 4.06 1 4.222 4.624 
3.736 3.723 3.76X 4.154 
3.658 3.658 3.658 3.x79 
3.657 3.657 3.657 3.743 

,i ’ ~ I w, 
lo4 2 5 

FIG. I. Comparison of local Nusselt numbers for Bi *CC 

and Pr = 0.7. 

first eight terms in equation (11) agree well with the 
results based on the first fifty eigenvalues given in [ 131 
and [14] for (.?/Pe) > 0.0005. This accuracy seems to 
be reasonable for the practical engineering purposes. 

This influence of the radial convection can be 
explained as follows: near the channel entrance, the 
fluid mean temperature is nearly the same in both the 

cases but the* wall heat flux given by (?T/G), in 
equation (35) is considerably larger than the actual 
rate of heating, because the continuity equation is not 
satisfied locally, if the radial convection is neglected. 

In Fig. 1, the present local Nusselt numbers are 
compared with the results obtained earlier for the 
developed and developing velocity fields, Bi + ‘^/L and 

Pr = 0.7. For this purpose, the results of Ulrichson 

and Schmitz [15] and Hwang and Sheu [16] are 
employed. They used the finite difference technique to 
solve the energy equation. They refined the analysis of 
Kays [17] by utilizing the axial velocity component 

of Langhaar solution and subsequently the radial 
component from the continuity equation to estimate 
the influence of the radial convection and by introduc- 
ing finer mesh sizes. It seems that the abscissa of the 
diagrams showing local Nusselt numbers in [15] is 
misprinted; it is supposed to be (\-/Pe)/4 instead of 
4(.Y/Pr). From Fig. 1, one can conclude a satisfactory 
agreement of the present results with the results 
reported in [15] and [16]. 

If the velocity and temperature fields are developing 

simultaneously, the axial velocity profile remains 
always in the range limited by p,.0 = 1 and ?.,,d = 
2(1 -r2). Consequently, for any given value of (.T/Pe), 

one expects Nu (slug flow) > Nu > NM (fully developed 

flow). 
In the case of Pr -+ 0. which is approximately valid 

for liquid metals, one can assume uniform velocity 
profile. In the case of Pr + J,, which is nearly valid 
for very viscous fluids (oils), one can assume fully 
developed velocity profile. This influence of Prandtl 

number on the local Nusselt number can be inferred 
from Table 1 for Bi +X 

The other extreme case of Bi + 0. which corresponds 
to the situation of the constant wall heat flux. cannot 
be treated with the approximation (1 l), as Cj + 0. For 
this particular case, which is well investigated by 
different authors employing different methods, one has 
to formulate another approximation, for instance as 
in [12]. 

Figure 1 and Table 1 illustrate the influence of the Tables 2-5 show the local Nusselt numbers for the 
radial convection on the heat-transfer coefficient different values of Pr and Bi and also illustrate the 
distinctly. They indicate that the local Nusselt number influence of the radial convection. The comparison of 
in the thermal entrance region, specially near the the present local Nusselt numbers with the results 
channel entrance, is overestimated significantly, if the given by Hsu [4], who solved eigenvalue problem 
radial convection term in the energy equation is numerically assuming a fully developed viscous flow 

L’, = 0 0 1131 

68.50 69.28 11 I.5 
63.66 64.68 Xl.23 
51.64 53.14 52.07 
38.06 40.36 37.32 
24.87 27.7’ 26.87 
15.45 17.6 1 17.67 
II.39 13.09 13.07 
8.448 9.88 I 9.883 
5.947 7.233 7.237 
4.83 I 6.177 6.179 
4.242 5.815 5.8 I7 
3.899 5.783 5.783 
3.745 5.783 5.783 

neglected. As (.Y,/Pe) decreases, the dif-ference between 
the local Nusselt number considering the radial con- 

vection and that neglecting it becomes pronounced, 
for instance 

Nu[( ?/PC) = 0.001, Bi + x’, Pr = 0.7, without radial 

convection] 

Nu[(\-/PC) = 0.001, Bi + x’. Pr = 0.7, with radial 
convection] 

= 32.91,!23.70 = 1.39. 



Table 2. Local Nusselt numbers for Bi = 100 at several values of Pr 

Developing flow 
\-JPe m=2 Pr= 10 Pr = 1 Pr = 0.7 Pr = 0.1 m-co 

t’, # 0 “, = 0 0, # 0 0, = 0 0, # 0 u, = 0 L’, # 0 L’, = 0 

0.0001 43.01 49.74 69.97 58.84 72.63 60.67 
0.0002 33.85 40.53 60.49 50.70 65.99 52.64 
0.0005 21.37 26.49 39.31 36.27 49.54 38.20 
0.001 15.87 18.27 23.38 24.78 32.99 26.24 
0.002 12.98 14.04 15.57 17.05 20.42 17.81 
0.005 9.621 9.837 10.83 Il.64 13.21 12.04 
0.01 7.558 7.501 8.08 1 8.597 9.690 8.874 
0.02 6.06 1 5.977 6.237 6.514 7.172 6.691 
0.05 4.672 4.677 4.719 4.776 5.084 4.872 
0.1 4.026 4.027 4.037 4.037 4.172 4.090 
0.2 3.722 3.723 3.726 3.723 3.751 3.740 
0.5 3.669 3.669 3.669 3.669 3.669 3.669 
1.0 3.666 3.666 3.666 3.667 3.667 3.667 

72.76 
66.38 
50.65 
34.40 
21.40 
13.65 
10.00 

7.387 
5.204 
4.248 
3.784 
3.669 
3.667 

70.48 73.76 74.39 
63.08 68.19 69.02 
48.34 54.77 56.65 
34.64 40.27 43.38 
22.93 26.45 30.17 
14.54 16.13 18.78 
10.64 11.72 13.71 
7.914 8.627 10.23 
5.649 6.025 7.385 
4.666 4.870 6.259 
4.176 4.263 5.869 
3.892 3.914 5.832 
3.750 3.763 5.832 

Table 3. Local Nusselt numbers for Bi = 10 at several values of Pr 

.T/Pe m=2 

O.OOQl 44.61 56.26 77.03 65.25 80.63 67.68 81.73 82.09 83.71 85.03 
0.0002 35.60 46.28 64.20 56.10 71.50 58.64 72.91 72.49 76.17 78.49 
0.0005 24.02 31.79 40.98 41.27 52.38 43.34 53.88 55.19 59.74 64.09 
0.001 18.12 22.52 26.10 29.69 35.74 31.26 37.23 40.59 44.19 50.35 
0.002 14.31 16.41 17.73 20.75 23.39 21.72 24.49 28.14 30.31 37.00 
0.005 10.40 11.02 11.80 13.43 14.71 13.97 15.30 17.49 18.60 23.70 
0.01 8.154 8.276 8.750 9.738 10.62 10.10 11.01 12.47 13.27 17.00 
0.02 6.469 6.47 1 6.684 7.217 7.777 7.441 8.033 9.043 9.594 12.36 
0.05 4.924 4.927 4.912 5.126 5.396 5.247 5.543 6.204 6.517 8.518 
0.1 4.193 4.194 4.207 4.244 4.365 4.307 4.450 4.974 5.160 6.942 
0.2 3.838 3.838 3.841 3.853 3.873 3.866 3.908 4.348 4.428 6.310 
0.5 3.763 3.763 3.763 3.764 3.764 3.764 3.764 4.008 4.025 6.224 
1.0 3.763 3.763 3.763 3.763 3.763 3.763 3.763 3.855 3.857 6.224 

Pr= 10 

D” # 0 V, = 0 

Developing flow 
Pr = 1 Pr = 0.7 

v, # 0 C, = 0 L’, # 0 l!, = 0 
Pr = 0.1 

c, # 0 c, = 0 
m --f cc 

Table 4. Local Nusselt numbers for Bi = 5 at several values of Pr 

.FlPe m=2 

0.0005 24.50 
0.001 18.68 
0.002 14.75 
0.005 10.77 
0.01 8.468 
0.02 6.705 
0.05 5.110 
0.1 4.329 
0.2 3.935 
0.5 3.845 
1.0 3.844 

Developing flow 
Pr= 10 Pr = 1 Pr = 0.7 Pr = 0.1 m-cc 

L’, # 0 0, = 0 u, # 0 u, = 0 c, # 0 0, = 0 li, # 0 0, = 0 
_____ 

31.93 40.19 42.16 52.58 44.31 55.30 58.89 62.98 67.72 
22.99 26.28 30.56 36.18 32.40 38.21 43.45 46.66 53.19 
16.81 18.12 21.58 24.02 22.89 25.53 30.11 32.19 38.89 
11.39 12.16 14.09 15.30 14.76 16.00 18.72 19.79 25.32 
8.590 9.062 10.26 11.07 10.70 11.53 13.34 14.07 18.35 
6.715 6.949 7.608 8.128 7.872 8.405 9.65 1 10.15 13.41 
5.113 5.149 5.368 5.621 5.504 5.778 6.576 6.858 9.255 
4.33 1 4.344 4.407 4.524 4.479 4.611 5.223 5.382 7.473 
3.937 3.944 3.965 3.978 3.974 4.017 4.495 4.572 6.684 
3.846 3.847 3.846 3.847 3.846 3.847 4.105 4.122 6.547 
3.844 3.845 3.844 3.844 3.844 3.845 3.941 3.950 6.547 

Table 5. Local Nusselt numbers for Bi = 2 at several values of Pr 

.Y/Pe 

0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

m=2 

___._ 
20.55 
15.82 
11.43 
8.938 
7.112 
5.389 
4.574 
4.120 
4.001 
4.000 

Pr = 10 
c, # 0 1’, = 0 

26.09 30.65 
18.69 20.06 
12.36 13.08 
9.287 9.691 
7.201 7.394 
5.391 5.452 
4.578 4.579 
4.129 4.133 
4.003 4.004 
4.000 4.000 

Developing flow 
Pr = 1 Pr = 0.7 

U, # 0 v, = 0 t’r # 0 “, = 0 
Pr = 0.1 

L’, # 0 c, = 0 

34.99 41.72 34.96 
23.87 26.65 24.62 
15.22 16.45 15.74 
11.02 11.81 11.43 

8.159 8.630 8.429 
5.760 5.981 5.884 
4.684 4.774 4.756 
4.165 4.174 4.171 
4.003 4.005 4.003 
4.000 4.000 4.000 

42.33 
27.60 
16.92 
12.17 
8.894 
6.119 
4.873 
4.210 
4.005 
4.000 

49.72 50.38 
33.26 33.71 
20.13 20.65 
14.32 14.71 
10.39 10.71 

7.118 7.291 
5.621 5.721 
4.759 4.823 
4.285 4.302 
4.105 4.108 

-______ 
54.41 
39.32 
25.68 
19.02 
14.26 
10.09 
8.181 
7.289 
7.088 
7.087 
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and calculated the first twelve eigenvalues and 
presented the local Nusselt numbers for (-?/PC) > 0.02 
and Bi = 2, IO and 100. indicated a good agreement. 
The results for the developing flow cannot be compared, 
since to the author’s knowledge no similar analysis is 
reported in the literature. In case of finite Biot number, 

qualitatively the same influence of the radial convec- 

tion and of Prandtl number on the local Nusselt 

number can be observed as in the cast of Bi + 7 
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APPENDIX 

The elements of the matrices and vectors occurring in 
equations (31) and (32) are listed below. 
N: Number of terms considered in approximation (I I). 
I = l.?,...N. 

i = 1,2,...N. 

il =;+I, jl =j+1. 

fw = l;2-C,(l+2imo) L- (j+ 1)2mo 
(?j+2)(m”+Zj+2) 

jZmo 

-I (2j+4)(mo+2/‘+4) . 

M(i,j)= 1/2+(l+2/mo) -C, 

[ i 
__!b.-- 
(2i+2)(mo+2i+2) 

AH,) 

-1 (2i+4)(mo+2i+4) 

(i2j5 +j’i:)m,~ 

(2i+2j+4)(mo+2i+2j+4) 

W(i,,j) = -4Cj( jl,j)’ I 2 2(‘, 
~- ~- - - -~ 

Jj(Zj+2) (2;+2j+2) 

‘I i: 
j’ 

x ~~~ ~_~ _~~~_ 

il. (2i+2j) (2i+zj+4) 

D(i. j) = M(i, j), if m. is replaced by m. 

QI = Il(?j+2)-I;(m+2j+2)-m,‘(m+2j+2)‘, 

QZ = I.‘(2j+4)- I~(nl+2j+4)-,,l~(/n+2j+4)‘, 

Q3 = I:(2i+?j+2)-l,‘(m+Zi+Zj+2) 
-mi(m+Zi+2j+2)‘. 

Q4 = l/(Zi+2j+4)- I,‘(m+2;+2j+-4) 
- nl!(m i 2i + Z!j + 4)2, 

QS = l:(2i+?~+6)-l~(rn+2i+~j+6) 
-!n:(n~ +2i+2j+6)‘. 

l”(i.j)=C,j2(j+I?jQL-jZ(2/+2)Q2 
-(j+ 1)‘2jC,[(i+l)*Q,-i*QL] 

+j2(2j+2)C,[(i+ l)‘Q4-i2Q5]I. 

ETABLISSEMENT SIMULTANE DES CHAMPS LAMINAIRES DE VITESSE ET DE 
TEMPERATURE DANS UN TUBE CIRCULAIRE AVEC CONDITIONS AUX LIMITES DE 

TROISIEME ESPECE SUR LA TEMPERATURE 

R&urn& Alin d’~ludler I’inHuence de I’ktablissement du rbgime d’ecoulement dans un tube circulaire 
sur la convection thermique for&e laminaire. on r&out I’tquation non-lintaire de quantite de mouvement 
ct I’equation liniaire de la chaleur par la mkthode. de Galerkin-Kantorowich, du calcul des variations. 
Moyennant des hypotheses de propriCtCs physiques du fluide constantes, d’une diffusion axiale ntgligeable 
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et de conditions aux limites de troisitme esptce sur la temperature, on a obtenu une solution explicite de 
vitesse et une solution semi-analytique pour la temperature. II ressort que les nombres de Nusselt locaux 
obtenus en considerant la convection radiale ou en la ntgligeant peuvent presenter d’importantes differences 

qui dependent des nombres de Biot et de Prandtl. 
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GLEICHZEITIGE AUSBILDUNG DER LAMINAREN GESCHWINDIGKEITS- 
UND TEMPERATURFELDER IN EINEM KREISFORMIGEN KANAL FtiR DIE 

RANDBEDINGUNG DRITTER ART 

Zusammenfassung-Mit Hilfe der Galerkin-Kantorowich Methode wurde die nichtlineare Bewegungs- 
und die lineare Energiegleichung sukzessiv gel&t, urn den Einflug der sich ausbildenden Stromung in 
einem kreisformigen Rohr bei Warmetibertragung unter laminarer erzwungener Konvektion zu analy- 
sieren. Unter Annahme konstanter Stoffwerte vernachlassigbarer axialer Diffusion und der Randbedingung 
dritter Art wurde eine Losung in geschlossener Form fur die Geschwindigkeit und eine halbanalytische 
Losung fur die Temperatur hergeleitet. Es zeigte sich, dal3 zwischen der ortlichen Nusselt-Zahl bei 
Beriicksichtigung der radialen Konvektion und jener bei Vernachlassigung dieser Konvektion, abhangig 

von der Bio- und Prandtl-Zahl betrachtliche Unterschiede auftreten konnen. 

OAHOBPEMEHHOE QOPMMPOBAHME IIOJIEH JIAMMHAPHOti CKOPOCI’M 
M TEMI-IEPATYPbI B TPY6E KPYI-JIOI-0 CEYEHHJI I-IPM 

TEMI-IEPATYPHOM FPAHMYHOM YCJIOBMM TPETbEI-0 POAA 

AtnioTaqHn - Mcnonbsyn MeTog aapaausotmoro uc4ricnetfun ranepKana-KaHTopoeH9a, nocne- 
nOBaTenbHOpe~eHblHenRHe~HOeypaBHeHaeKOnlireCTBa~BA~eHHIIHn~HetiHOeypaBHeH~e3Hepree, 

c no~o4bH3KoropbtxaHan~3ripyerc~snu~~~epa3euea~~erocnTe~e~~n~Tpy6eKpyrnoroce~eHun 

Ha TeLInOO6MeH IlpH naM&iHapHOfi BbIHyW(eHHOfi KOHBeKUHW. B npentlOnO~eHtiH LJOCTORHHblX 

CBO~CTBNi~KOCTLi,He3HaWTenbHO~aKC~anbHO~fVi+$y3H~ HTeMtlepaTypHOrO ~paHWiHO~OyCJlOBliR 

Tperbero poqa,nonyreHopeureHtieB3aMKHyToM Bwqe nnn CKO~~CTA HTe~nepaTypbl.MsnpoBenetc- 

~oroatianasa cnenye-r, 9~0 B~~BHCHMOCTAOT wcen 6~0 u npaHnTn5InoKanbHbleWicna HyccenbTa 

npHyYeTepan&ianbHOii KOHBeKUHH H 6e3HeeMOryT3HawTenbHOOTnwaTbcfl. 


